
CMSC 341

Lecture 14: Priority Queues, Heaps

Prof. John Park

Based on slides from previous iterations of this course

Today’s Topics

 Priority Queues

 Abstract Data Type

 Implementations of Priority Queues:

 Lists

 BSTs

 Heaps

 Heaps

 Properties

 Insertion

 Deletion

UMBC CMSC 341 Priority Queues (Heaps) 2

Priority Queues and Heaps

3

Priority Queue ADT

 A priority queue stores a collection of entries

 Typically, an entry is a pair
(key, value)

where the key indicates the priority

 Smaller value, higher priority

 Keys in a priority queue can be arbitrary

objects on which an order is defined

UMBC CMSC 341 Priority Queues (Heaps) 4

Priority Queue vs Queue

 Priority queue is a specific type of queue

 Queues are FIFO

 The element in the queue for the longest time is

the first one we take out

 Priority queues: most important, first out

 The element in the priority queue with the highest

priority is the first one we take out

 Examples: emergency rooms, airline boarding

UMBC CMSC 341 Priority Queues (Heaps) 5

Implementing Priority Queues

 Priority queues are an Abstract Data Type

 They are a concept, and hence there are many

different ways to implement them

 Possible implementations include

 A sorted list

 An ordinary BST

 A balanced BST

 Run time will vary based on implementation

UMBC CMSC 341 Priority Queues (Heaps) 6

Implementing a Priority Queue

7

Priority Queue: Unsorted List

 We can implement a priority queue with a

simple unsorted list (array, vector, etc.)

 Insertion just adds element to end of list

 Enqueuing new element takes O(1) time

 However, to find the highest priority, must find

MIN(entire list), which takes O(n) time

UMBC CMSC 341 Priority Queues (Heaps) 8

Priority Queue: Sorted List

 We can implement a priority queue with a

sorted list (array, vector, etc.)

 Sorted by priority upon insertion

 To find the highest priority, simply take the first

element, in O(1) time

findMin() --> list.front()

 Insertion can take O(n) time, however

UMBC CMSC 341 Priority Queues (Heaps) 9

Priority Queue: BST

 A BST makes a bit more sense than a list

 Sorted like a regular BST upon insertion

 To find the minimum, just go to the left

call findMin()

 And removal will be easy, because

it will always be a leaf node!

 Insertion should take no more than O(log n) time

call Insert()

UMBC CMSC 341 Priority Queues (Heaps) 10

Priority Queue: BST Downsides

 Unfortunately, a BST Priority Queue can

become unbalanced very easily, and the

actual run time will suffer

 If we have a low

priority (high value)

instance as our root,

nearly everything

will be to its left

 findMin() is

now O(n) time 

UMBC CMSC 341 Priority Queues (Heaps) 11

Priority Queue: Heap

 The most common way to implement a

priority queue is using a heap

 A heap is a binary tree (not a BST!!!) that

satisfies the “heap condition”:

 Nodes in the tree are sorted based in relation to

their parent’s value, such that if A is a parent

node of B, then the key of node A is ordered with

respect to the key of node B with the same

ordering applying across the heap

 Additionally, the tree must be complete

UMBC CMSC 341 Priority Queues (Heaps) 12

Heaps

13

Min Binary Heap

 A min binary heap is a…

 Complete binary tree

 Neither child is smaller than the value in the parent

 No order between left and right

 In other words,

smaller items go

above larger ones

UMBC CMSC 341 Priority Queues (Heaps) 14

Min Binary Heap

 This property is called a partial ordering

 There is no set relation between siblings,

cousins, etc. – only that the values grow as we

increase our distance from the root

 As a result of this partial ordering, every

path from the root to a leaf visits nodes

in a non-decreasing order

UMBC CMSC 341 Priority Queues (Heaps) 15

Min Binary Heap Performance

 Performance

 (n is the number of elements in the heap)

 construction O(n)

 findMin() O(1)

 insert() O(lg n)

 deleteMin() O(lg n)

UMBC CMSC 341 Priority Queues (Heaps) 16

Convert a Heap to an Array

 Level-order traversal

UMBC CMSC 341 Priority Queues (Heaps) 17

Min Binary Heap Performance

 Heap efficiency results, in part, from the

implementation

 Conceptually a complete binary tree

 But implemented by using an array/vector

(in level order) with the root at index 1

UMBC CMSC 341 Priority Queues (Heaps) 18

Min Binary Heap Performance

 For a node at index i

 Its left child is at index 2i

 Its right child is at index 2i+1

 Its parent is at index ⌊i/2⌋

 No pointer storage

 Fast computation of 2i and ⌊i/2⌋ by bit shifting

 i << 1 = 2i

 i >> 1 = ⌊i/2⌋

UMBC CMSC 341 Priority Queues (Heaps) 19

Min Binary Heap: Exercises

 How to find the parent of E?

 The left child of D?

 The right child of A?

UMBC CMSC 341 Priority Queues (Heaps) 20

Building a Heap

21

Insert Operation

 Must maintain

 Heap shape:

 Easy, just insert new element at “the end” of the array

 Min heap order:

1. Could be wrong after insertion if new element is

smaller than its ancestors

2. Continuously swap the new element with its parent

until parent is not greater than it (“percolate up”)

 Performance of insert is O(log n) in the

worst case because the height of a complete
binary tree (CBT) is at most log n

UMBC CMSC 341 Priority Queues (Heaps) 22

Insert Code

void insert(const Comparable &x) {

/* First, check we are not overflowing array

(code not included here) */

// percolate up

Comparable tmp;

int hole = ++currentSize;

array[hole] = x;

for(; hole > 1 && x < array[hole/2]; hole /= 2) {

// swap, from child to parent

tmp = array[hole];

array[hole] = array[hole / 2];

array[hole / 2] = tmp;

}

}

UMBC CMSC 341 Priority Queues (Heaps) 23

Insert Code (v2)

/* More efficient version, where instead of swapping

pairs, we just shift values down until right spot

*/

void insert(const Comparable &x) {

/* First check we are not overflowing array

(code not included here) */

// percolate up

int hole = ++currentSize;

for(; hole > 1 && x < array[hole/2]; hole /= 2) {

// swap, from child to parent

array[hole] = array[hole / 2];

}

array[hole] = x;

}

UMBC CMSC 341 Priority Queues (Heaps) 24

Insert Example: 14

UMBC CMSC 341 Priority Queues (Heaps) 25

Delete Operation

 Steps
 Remove min element (the root)

 Maintain heap shape

 Maintain min heap order

 To maintain heap shape, actual node

removed is “last one” in the array
 Replace root value with value from last node and

delete last node

 Sift-down the new root value
 Continually exchange value with the smaller child until

no child is smaller.

UMBC CMSC 341 Priority Queues (Heaps) 26

Delete Code

void deleteMin() {

/* First, check for empty queue (code not included here) */

int hole, child;

Comparable tmp = array[currentSize--];

for (hole = 1, child = 2; child <= currentSize;

hole = child, child *= 2) {

/* find smaller of siblings (if there is one) */

if (child < currentSize && array[child+1] < array[child])

child++;

if (array[child] < tmp)

array[hole] = array[child];

else

break;

}

array[hole] = tmp;

}

UMBC CMSC 341 Priority Queues (Heaps) 27

Example: Delete Min

UMBC CMSC 341 Priority Queues (Heaps) 28

Example: Delete Min

UMBC CMSC 341 Priority Queues (Heaps) 29

Visualization

 This visualization of a minimum heap may be

helpful in your understanding of the different

properties of a heap, as well as the exact

steps taken for the operations of insertion,

deletion, etc.

 http://www.cs.usfca.edu/~galles/JavascriptVis

ual/Heap.html

UMBC CMSC 341 Priority Queues (Heaps) 30

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

