CMSC 341 Lecture 14: Priority Queues, Heaps

Prof. John Park

Today's Topics

- Priority Queues
 - Abstract Data Type
- Implementations of Priority Queues:
 - Lists
 - BSTs
 - Heaps
- Heaps
 - Properties
 - Insertion
 - Deletion

Priority Queues and Heaps

Priority Queue ADT

A priority queue stores a collection of entries

- Typically, an entry is a pair
 (key, value)
 where the key indicates the priority
 - Smaller value, higher priority

 Keys in a priority queue can be arbitrary objects on which an order is defined

Priority Queue vs Queue

Priority queue is a specific type of queue

- Queues are FIFO
 - The element in the queue for the longest time is the first one we take out
- Priority queues: most important, first out
 - The element in the priority queue with the highest priority is the first one we take out
 - Examples: emergency rooms, airline boarding

Implementing Priority Queues

- Priority queues are an Abstract Data Type
 - They are a concept, and hence there are many different ways to implement them

- Possible implementations include
 - A sorted list
 - An ordinary BST
 - A balanced BST
- Run time will vary based on implementation

Implementing a Priority Queue

Priority Queue: Unsorted List

- We can implement a priority queue with a simple unsorted list (array, vector, etc.)
- Insertion just adds element to end of list
 - Enqueuing new element takes O(1) time
 - However, to find the highest priority, must find MIN(entire list), which takes O(n) time

Priority Queue: Sorted List

- We can implement a priority queue with a sorted list (array, vector, etc.)
- Sorted by priority upon insertion
 - To find the highest priority, simply take the first element, in O(1) time

```
findMin() --> list.front()
```

Insertion can take O(n) time, however

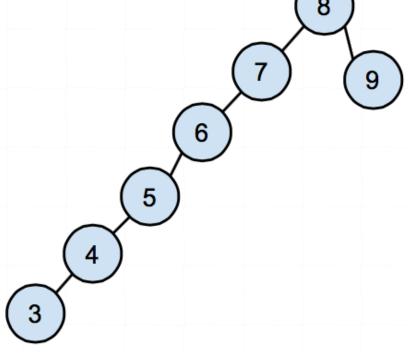
Priority Queue: BST

- A BST makes a bit more sense than a list
- Sorted like a regular BST upon insertion
 - To find the minimum, just go to the left call findMin()
 - And removal will be easy, because it will always be a leaf node!
 - Insertion should take no more than O(log n) time call Insert()

Priority Queue: BST Downsides

 Unfortunately, a BST Priority Queue can become unbalanced very easily, and the actual run time will suffer

- If we have a low priority (high value) instance as our root, nearly everything will be to its left
- findMin() is now O(n) time ⊗



Priority Queue: Heap

- The most common way to implement a priority queue is using a heap
- A heap is a binary tree (<u>not</u> a BST!!!) that satisfies the "heap condition":
 - Nodes in the tree are sorted based in relation to their parent's value, such that if A is a parent node of B, then the key of node A is ordered with respect to the key of node B with the same ordering applying across the heap
- Additionally, the tree must be <u>complete</u>

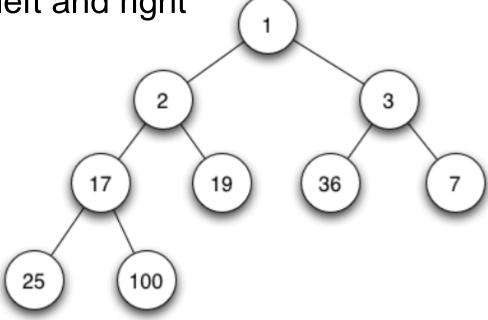
Heaps

Min Binary Heap

- A min binary heap is a...
 - Complete binary tree
 - Neither child is smaller than the value in the parent

No order between left and right

 In other words, smaller items go above larger ones



Min Binary Heap

- This property is called a partial ordering
 - There is <u>no</u> set relation between siblings, cousins, etc. – only that the values grow as we increase our distance from the root
- As a result of this partial ordering, every path from the root to a leaf visits nodes in a non-decreasing order

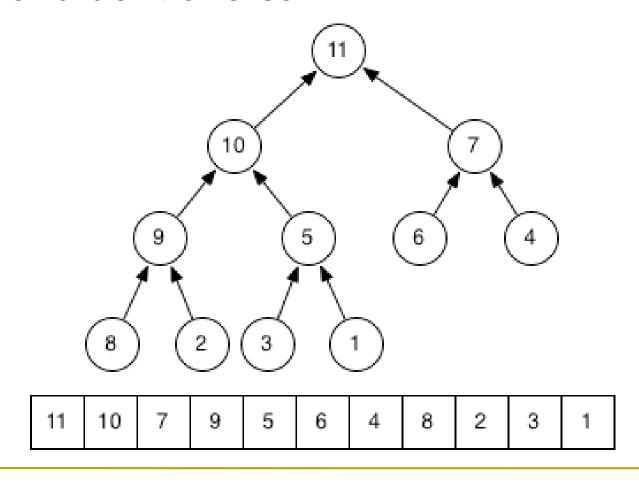
Min Binary Heap Performance

- Performance
 - (n is the number of elements in the heap)

- constructionO(n)
- findMin() O(1)
- insert() O(lg n)
- deleteMin() O(lg n)

Convert a Heap to an Array

Level-order traversal



Min Binary Heap Performance

- Heap efficiency results, in part, from the implementation
 - Conceptually a complete binary tree
 - But implemented by using an array/vector (in level order) with the root at index 1

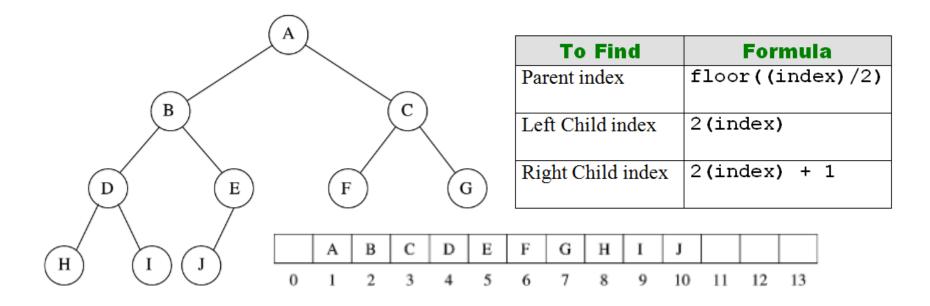
To Find	Formula
Parent index	floor((index)/2)
Left Child index	2(index)
Right Child index	2(index) + 1

Min Binary Heap Performance

- For a node at index i
 - □ Its left child is at index 2i
 - Its right child is at index 2i+1
 - □ Its parent is at index [i/2]
- No pointer storage
- Fast computation of 2i and [i/2] by bit shifting
 - □ i << 1 = 2i
 - \Box i >> 1 = |i/2|

Min Binary Heap: Exercises

- How to find the parent of E?
- The left child of D?
- The right child of A?



Building a Heap

Insert Operation

- Must maintain
 - Heap shape:
 - Easy, just insert new element at "the end" of the array
 - Min heap order:
 - Could be wrong after insertion if new element is smaller than its ancestors
 - 2. Continuously swap the new element with its parent until parent is not greater than it ("percolate up")
- Performance of insert is O (log n) in the worst case because the height of a complete binary tree (CBT) is at most log n

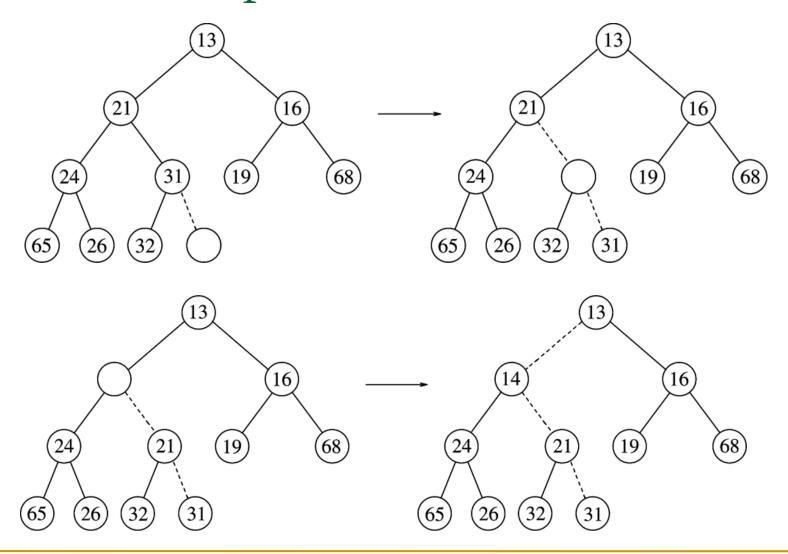
Insert Code

```
void insert(const Comparable &x) {
  /* First, check we are not overflowing array
     (code not included here) */
  // percolate up
  Comparable tmp;
  int hole = ++currentSize;
  array[hole] = x;
  for (; hole > 1 && x < array[hole/2]; hole /= 2) {
     // swap, from child to parent
     tmp = array[hole];
     array[hole] = array[hole / 2];
     array[hole / 2] = tmp;
```

Insert Code (v2)

```
/* More efficient version, where instead of swapping
  pairs, we just shift values down until right spot
 */
void insert(const Comparable &x) {
  /* First check we are not overflowing array
     (code not included here) */
  // percolate up
  int hole = ++currentSize;
  for (; hole > 1 && x < array[hole/2]; hole /= 2) {
      // swap, from child to parent
     array[hole] = array[hole / 2];
  array[hole] = x;
```

Insert Example: 14



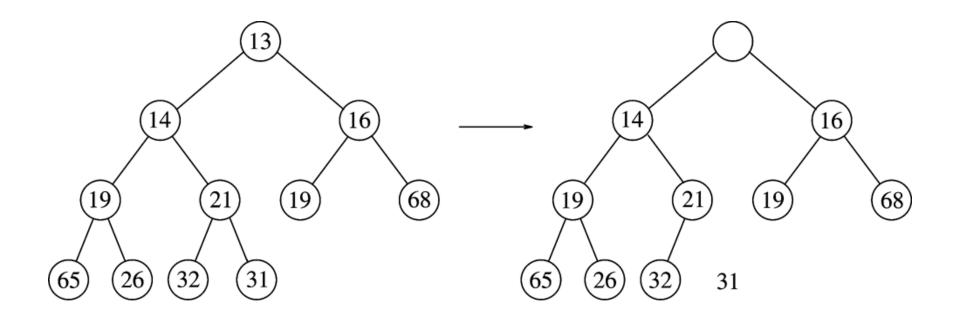
Delete Operation

- Steps
 - Remove min element (the root)
 - Maintain heap shape
 - Maintain min heap order
- To maintain heap shape, actual node removed is "last one" in the array
 - Replace root value with value from last node and delete last node
 - Sift-down the new root value
 - Continually exchange value with the smaller child until no child is smaller.

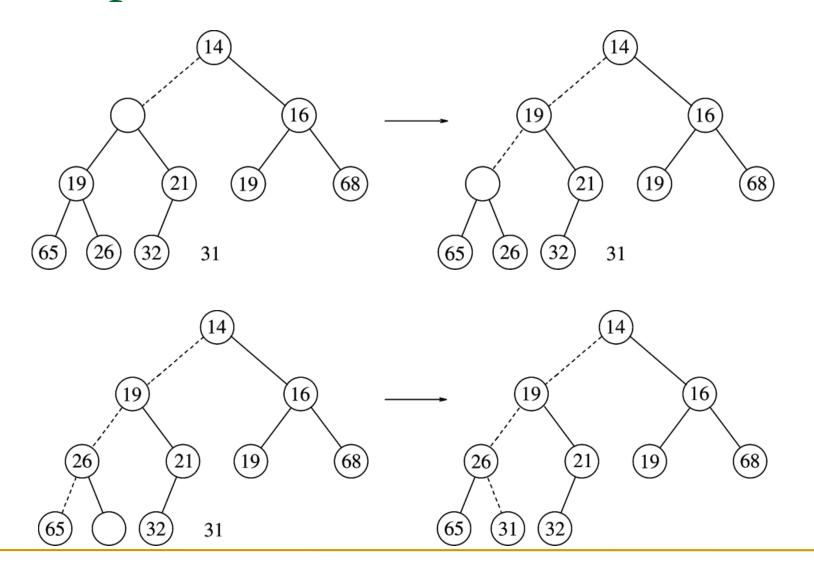
Delete Code

```
void deleteMin() {
  /* First, check for empty queue (code not included here) */
  int hole, child;
  Comparable tmp = array[currentSize--];
  for (hole = 1, child = 2; child <= currentSize;
      hole = child, child *= 2) {
    /* find smaller of siblings (if there is one) */
    if (child < currentSize && array[child+1] < array[child])</pre>
      child++;
    if (array[child] < tmp)</pre>
      array[hole] = array[child];
    else
      break:
  array[hole] = tmp;
```

Example: Delete Min



Example: Delete Min



Visualization

- This visualization of a minimum heap may be helpful in your understanding of the different properties of a heap, as well as the exact steps taken for the operations of insertion, deletion, etc.
- http://www.cs.usfca.edu/~galles/JavascriptVis ual/Heap.html